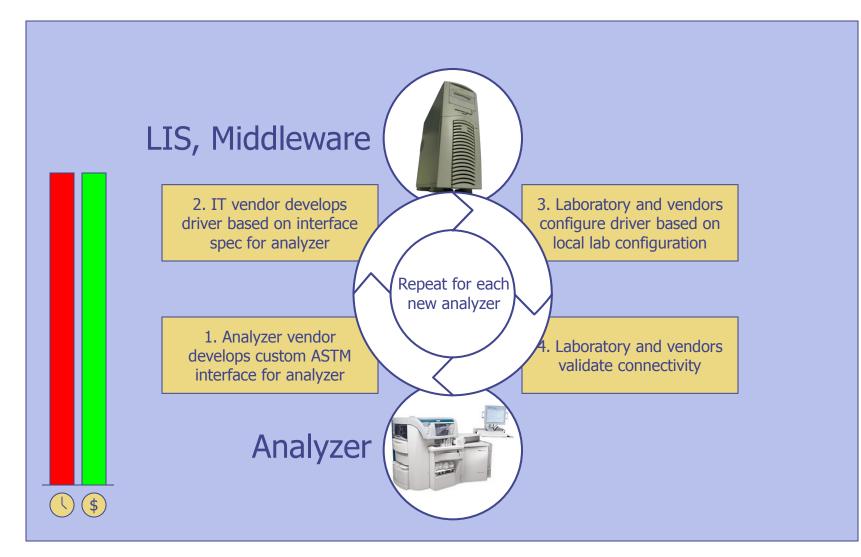
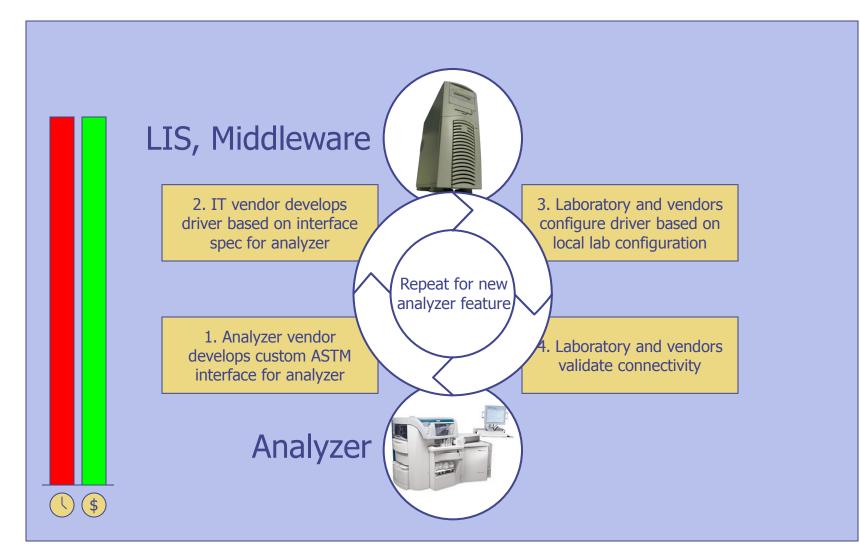
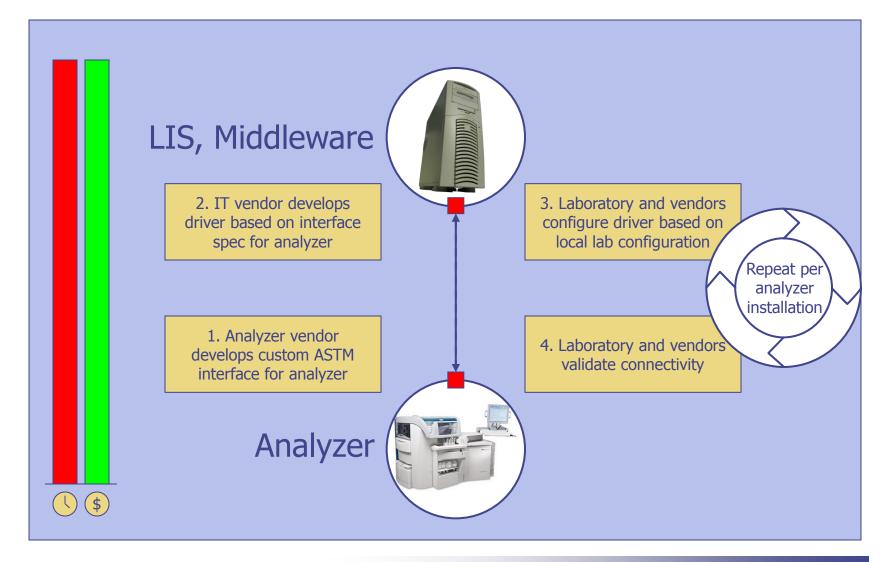

Introducing the IVD Industry Connectivity Consortium

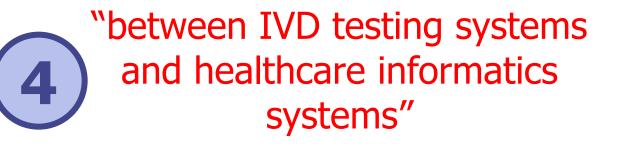

Ed Heierman CTO, IVD Industry Connectivity Consortium May 2014


Agenda


- **1** Why we need to modernize analyzer connectivity
- **2** Foundation of IVD Industry Connectivity Consortium
- **3** Collaborations with leading standards organizations
- **4** Target outcomes for the clinical laboratory industry

Reducing complexity will reduce time and cost

- Time and money spent on interfacing should be spent elsewhere
- The ideal endpoint is plug and play interoperability
- Complexity can be reduced via elimination of variability in standards implementation at three layers:
 - Use Case Layer (major variation)
 - Messaging Layer (major variation)
 - Low Level Layer (minor variation)


Agenda

- **1** Why we need to modernize analyzer connectivity
- 2 Foundation of IVD Industry Connectivity Consortium
- **3** Collaborations with leading standards organizations
- **4** Target outcomes for the clinical laboratory industry

Scope: Absolutely Global

- Most labs may be country-oriented, but most IVD products are sold globally
- We have to balance differences between Europe, US, Japan, and others
- We have to ensure that national efforts keep globalization in mind (e.g. HITSP)

Scope: Types of data flows

In Scope:

- IVD Test Orders (Patient & Quality Control)
- IVD Test Results (Patient & Quality Control)

Out of Scope (Potential Future Effort):

- Calibration Data
- Configuration Information
- Process Status Monitoring

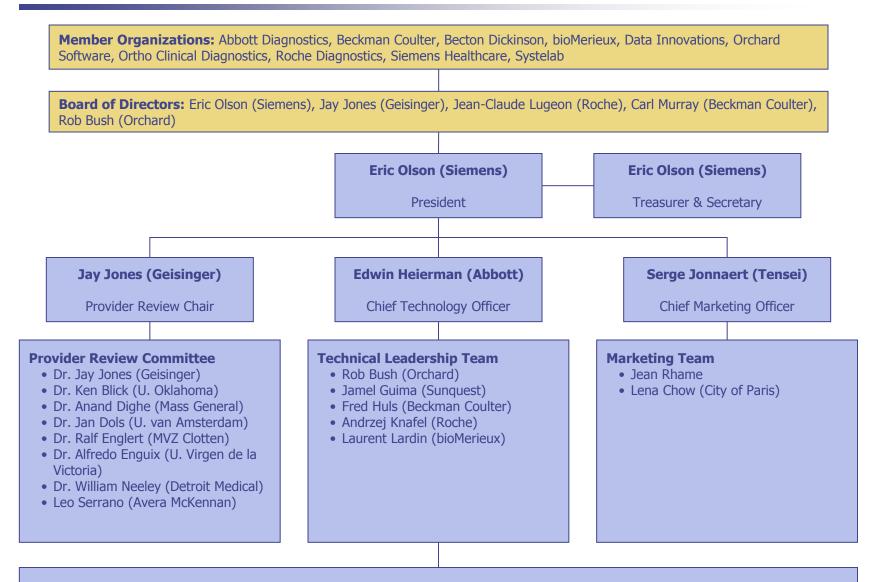
Scope: Types of IVD testing

In Scope (Priority Order):

- 1. Clinical Chemistry
- 2. Immunoassay
- 3. Hematology
- 4. Hemostasis
- 5. Microbiology
- 6. Molecular

Out of Scope:

- Point of Care
- Anatomic Pathology
- Imaging


Scope: Types of IT systems

In Scope:

- IICC will cover the transmission of orders and results between IT systems and IVD analyzers
- IICC will not attempt to distinguish the roles of different types of IT systems (e.g. LIS, middleware, automation manager)

Out of Scope:

- IICC will not attempt to standardize the features of IT systems only their external connectivity
- IICC is not specifically focused on middleware

Technical Team Members: Bobby Brown (Orchard), Audrey Carlson (Sunquest), Dilip Jha (Siemens), Candace Minker (Sunquest), Daniel Moncusi (Systelab), Dan Nguyen (Abbott), Dmytro Rud (Roche), Joanna Selinsky (Beckman Coulter), Jordi Treserres (Systelab), Andy Weyl (Siemens), Andrei Volkov (Siemens), Bill Williams (Abbott), James Wulkan (Beckman Coulter)

Agenda

- **1** Why we need to modernize analyzer connectivity
- **2** Foundation of IVD Industry Connectivity Consortium
- **3** Collaborations with leading standards organizations
- **4** Target outcomes for the clinical laboratory industry

IICC has partnered with CLSI, IHE, and HL7

Technology Adoption

- Partner with CLSI
- Laboratory standards publication, e.g. a new LIS standard

Use Case Layer

- Partner with IHE
- Build on the work of IHE's LDA (Lab Device Automation)

Message Layer

- Partner with HL7
- Build on the work of HL7's v2.x Standard

Low Level Layer

- Partner with HL7
- Build on the work of HL7's MLLP (Minimal Low Level Protocol)

Partnership with IHE LAB

- Leverage the talents of the active members of IHE LAB
- Build from LDA profile that is the closest our industry has come to achieving interoperability
- Utilize IHE's approach to constraining standards
- Utilize IHE's approach to demonstrating conformance
 - Connectathons
 - Showcases

Agenda

- **1** Why we need to modernize analyzer connectivity
- **2** Foundation of IVD Industry Connectivity Consortium
- **3** Collaborations with leading standards organizations

4 Target outcomes for the clinical laboratory industry

Development of new IHE Laboratory Profile

- Split LDA (Laboratory Device Automation) into two profiles
 - LDA
 - Automation Manager
 - Pre/post processor
 - LAW (Laboratory Analytical Workflow)
 - Analyzer Manager
 - Analyzer
- Create international implementation guide that defines the minimum set of interactions required for plug-n-play
 - Provides basic functionality
 - Optional interactions can be supported though configuration changes

Extend Existing IHE Use Cases that Provide Partial Coverage

- Unsolicited new Work Order Step (WOS) download
- Unsolicited WOS update or cancel
- LD query for WOS for specific specimen(s)
- WOS manually entered at LD
- Upload to AM final results generated on LD
- Rerun decided on LD
- Rerun decided on AM

Define New Use Cases

- LD query for WOS for all specimens
- LD informs AM about WOS validity status
- Upload to AM preliminary results generated on LD
- Retransmit results to AM
- AM informs LD about observation validity status
- Pooling of patient specimens
- Reflex test decided on LD
- Reflex test decided on AM

Define Behavior and Messages for LAW Profile

- IHE Laboratory Technical Framework Volume I contains use case and transaction definitions
- IHE Laboratory Technical Framework Volume II contains message (HL7) definitions

Summary of Baseline Standard Selection

- Considered ASTM, HL7 v2.x, and HL7 v3
- Basic Messaging Requirements:
 - Evaluated standards against basic messaging requirements
 - Reviewed with domain experts
 - HL7 v3 (89%) > HL7 v2.x (83%) > ASTM (37%)
- Use Case Considerations:
 - Developed IICC Use Cases using IHE as a starting point
 - Evaluated standards support for use cases
 - HL7 v3 (91%) = HL7 v2.x (91%) > ASTM (59%)
- Low Level Considerations:
 - Established low level scope and requirements
 - Evaluated standards support for low level recommendations
 - HL7 v3 (68%) > HL7 v2.x (62%) > ASTM (55%)
- Evaluated Nontechnical Considerations

Baseline Standard Selection Status

Calculate the scores and combine it in the standard evaluation matrix with the analysis by Use Cases, Messaging, and Low Level Protocol teams.

Project Name: IICC Messaging Standard		Description: Selection of Baseline Standard and Partner SDO									
Team Leader <mark>: Andrzej J. Knafel</mark>		Team Members: <mark>Dan Roberts (Siemens); Daniel Moncusi (NTE); Ed Harshberger (BioMerieux); Oday</mark> Hameed (Abbott); Sarkis B. Abadjian (Beckman Coulter)								'	
		Scoring (modify as needed)	HL7 v2.x			HL7 v3			CLSI LI2 / ASTM E1394		
	Item Weight	Score Criteria	Response	Item Score	Total Score	Response	Item Score	Total Score	Response	Item Score	Total Score
General comment / stat ement about the offer		Evaluation input by technical teams	I in the LIX and comp			ular oriented, but low popularity, cumbersome in			Technical concept not state of art. Very popular at device level.		
Fechnical Information											
Fulfillment of the use cases & data requirements	15	None = 0% Full = 100% (based on a separate requirements coverage analysis)		91%	13.7		91%	13.7		59%	8.9
Support for messaging requirements	15	None = 0% Full = 100% (based on a separate requirements coverage analysis)		83%	12.5		89%	13.4		37%	5.6
Support for low level requirements	Ĵ	None = 0% Full = 100% (based on a separate requirements coverage analysis)		62%	3.1		68%	3.4		55%	2.8
Complexity of implementation	15	High complexity = 0, Moderate = 0.5, Low complexity, tools and support available =	Moderate	1	15.0	High	0	0.0	Moderate	1	15.0
Fotal Technical Information	50				44.2			30.4			32.2
Organizational Information											
Ease of adoption by IVD and LIS vendors	20	Limited = 0, Adequate = 0.5, Exclint = 1	Adequate	0.5	10.0	Poor	0	0.0	Adequate	0.5	10.0
Future potential of the standard protocol	10	Limited = 0, Adequate = 0.5, Exclint = 1	Adequate	0.5	5.0	Excellent	1	10.0	Poor	0	0.0
Standard development process of the SDO	Ĵ	Poor (cumbersome or chaotic) = 0, Adequate = 0.5, Exclint = 1	Adequate	0.5	2.5	Adequate	0.5	2.5	Adequate	0.5	2.5
Standard development and publication timeline	Ĵ	Unaceptbl long and no IICC influence =0, Aceptbl length / freq =0.5, Driven by IICC =	Acceptable	0.5	2.5	Acceptable	0.5	2.5	Acceptable	0.5	2.5
SDO cooperation model	8	Poor influence =0, Adeq. (voting in existing committee) =0.5, Dedicated committee =1	Adequate	0.5	4.0	Adequate	0.5	4.0	Excellent	1	8.0
Licensing model and publication model	2	Poor = 0, None/Accptbl = 0.5, Good (low cost and easy available) = 1	None/Acceptable	0.5	1.0	None/Acceptable	0.5	1.0	None/Acceptable	0.5	1.0
Licensing model and publication model										_	
Fotal Organizational Information	50				25.0			20.0			24.0

Evaluation Score Summary

- HL7 v2.x: 69.2
- HL7 v3: 50.4
- ASTM 1394 / CLSI LIS-2: 56.2